Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 803
Filtrar
1.
Plant Cell Rep ; 43(6): 138, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733408

RESUMO

KEY MESSAGE: The soybean gene GmSABP2-1 encodes methyl salicylate esterase and its overexpression led to significant reduction in development of pathogenic soybean cyst nematode. Soybean cyst nematode (SCN, Heterodera glycines) is one of the most devastating pests of soybean (Glycine max L. Merr.). In searching for SCN-defense genes, a soybean gene of the methylesterase (MES) family was found to be upregulated in an SCN-resistant soybean line and downregulated in an SCN-susceptible line upon SCN infection. This gene was designated as GmSABP2-1. Here, we report on biochemical and overexpression studies of GmSABP2-1 to examine its possible function in SCN resistance. The protein encoded by GmSABP2-1 is closely related to known methyl salicylate esterases. To determine the biochemical function of GmSABP2-1, a full-length cDNA of GmSABP2-1 was cloned into a protein expression vector and expressed in Escherichia coli. The resulting recombinant GmSABP2-1 was demonstrated to catalyze the demethylation of methyl salicylate. The biochemical properties of GmSABP2-1 were determined. Its apparent Km value was 46.2 ± 2.2 µM for methyl salicylate, comparable to those of the known methyl salicylate esterases. To explore the biological significance of GmSABP2-1 in soybean defense against SCN, we first overexpressed GmSABP2-1 in transgenic hairy roots of an SCN-susceptible soybean line. When infected with SCN, GmSABP2-1-overexpressing hairy roots showed 84.5% reduction in the development of SCN beyond J2 stage. To provide further genetic evidence for the role of GmSABP2-1 in SCN resistance, stable transgenic soybean plants overexpressing GmSABP2-1 were produced. Analysis of the GmSABP2-1-overexpressing lines showed a significant reduction in SCN development compared to non-transgenic plants. In conclusion, we demonstrated that GmSABP2-1 encodes methyl salicylate esterase and functions as a resistance-related gene against SCN.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Doenças das Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Salicilatos , Tylenchoidea , Glycine max/genética , Glycine max/parasitologia , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Salicilatos/metabolismo , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Resistência à Doença/genética
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731798

RESUMO

Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.


Assuntos
Afídeos , Triticum , Animais , Afídeos/fisiologia , Triticum/parasitologia , Triticum/genética , Triticum/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Adaptação Fisiológica , Doenças das Plantas/parasitologia , Regulação da Expressão Gênica de Plantas , Nicotiana/parasitologia , Nicotiana/genética , Ciclopentanos/metabolismo , Oxilipinas
3.
Sci Rep ; 14(1): 9958, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693197

RESUMO

Numerous plant parasitic nematodes (PPNs) have the potential to inflict considerable damage on agricultural crops. Through a comprehensive survey aimed at identifying PPNs affecting crops, cyst nematodes were isolated from the rhizosphere soil of buckwheat (Fagopyrum esculentum). Employing both molecular and morphological techniques, this cyst nematode was conclusively identified as Heterodera ripae. Notably, this represents the first documented occurrence of this particular cyst nematode species within the rhizosphere soil of F. esculentum.


Assuntos
Fagopyrum , Rizosfera , Tylenchoidea , Fagopyrum/parasitologia , Animais , Tylenchoidea/genética , Solo/parasitologia , Doenças das Plantas/parasitologia , Filogenia
4.
Mol Plant Pathol ; 25(5): e13461, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695657

RESUMO

Mitogen-activated protein kinase (MPK) cascades play central signalling roles in plant immunity and stress response. The soybean orthologue of MPK kinase2 (GmMKK2) was recently identified as a potential signalling node whose expression is upregulated in the feeding site induced by soybean cyst nematode (SCN, Heterodera glycines). To investigate the role of GmMKK2 in soybean-SCN interactions, we overexpressed a catabolically inactive variant referred to as kinase-dead variant (KD-GmMKK2) using transgenic hairy roots. KD-GmMKK2 overexpression caused significant reduction in soybean susceptibility to SCN, while overexpression of the wild-type variant (WT-GmMKK2) exhibited no effect on susceptibility. Transcriptome analysis indicated that KD-GmMKK2 overexpressing plants are primed for SCN resistance via constitutive activation of defence signalling, particularly those related to chitin, respiratory burst, hydrogen peroxide and salicylic acid. Phosphoproteomic profiling of the WT-GmMKK2 and KD-GmMKK2 root samples upon SCN infection resulted in the identification of 391 potential targets of GmMKK2. These targets are involved in a broad range of biological processes, including defence signalling, vesicle fusion, chromatin remodelling and nuclear organization among others. Furthermore, GmMKK2 mediates phosphorylation of numerous transcriptional and translational regulators, pointing to the presence of signalling shortcuts besides the canonical MAPK cascades to initiate downstream signalling that eventually regulates gene expression and translation initiation. Finally, the functional requirement of specific phosphorylation sites for soybean response to SCN infection was validated by overexpressing phospho-mimic and phospho-dead variants of two differentially phosphorylated proteins SUN1 and IDD4. Together, our analyses identify GmMKK2 impacts on signalling modules that regulate soybean response to SCN infection.


Assuntos
Glycine max , Doenças das Plantas , Transdução de Sinais , Tylenchoidea , Glycine max/parasitologia , Glycine max/genética , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Tylenchoidea/fisiologia , Tylenchoidea/patogenicidade , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistência à Doença/genética
5.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673861

RESUMO

Plant-parasitic nematodes (PPNs) are among the most serious phytopathogens and cause widespread and serious damage in major crops. In this study, using a genome mining method, we identified nonribosomal peptide synthetase (NRPS)-like enzymes in genomes of plant-parasitic nematodes, which are conserved with two consecutive reducing domains at the N-terminus (A-T-R1-R2) and homologous to fungal NRPS-like ATRR. We experimentally investigated the roles of the NRPS-like enzyme (MiATRR) in nematode (Meloidogyne incognita) parasitism. Heterologous expression of Miatrr in Saccharomyces cerevisiae can overcome the growth inhibition caused by high concentrations of glycine betaine. RT-qPCR detection shows that Miatrr is significantly upregulated at the early parasitic life stage (J2s in plants) of M. incognita. Host-derived Miatrr RNA interference (RNAi) in Arabidopsis thaliana can significantly decrease the number of galls and egg masses of M. incognita, as well as retard development and reduce the body size of the nematode. Although exogenous glycine betaine and choline have no obvious impact on the survival of free-living M. incognita J2s (pre-parasitic J2s), they impact the performance of the nematode in planta, especially in Miatrr-RNAi plants. Following application of exogenous glycine betaine and choline in the rhizosphere soil of A. thaliana, the numbers of galls and egg masses were obviously reduced by glycine betaine but increased by choline. Based on the knowledge about the function of fungal NRPS-like ATRR and the roles of glycine betaine in host plants and nematodes, we suggest that MiATRR is involved in nematode-plant interaction by acting as a glycine betaine reductase, converting glycine betaine to choline. This may be a universal strategy in plant-parasitic nematodes utilizing NRPS-like ATRR to promote their parasitism on host plants.


Assuntos
Arabidopsis , Betaína , Peptídeo Sintases , Tylenchoidea , Betaína/metabolismo , Animais , Tylenchoidea/metabolismo , Tylenchoidea/genética , Arabidopsis/parasitologia , Arabidopsis/metabolismo , Arabidopsis/genética , Peptídeo Sintases/metabolismo , Peptídeo Sintases/genética , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Nematoides/metabolismo , Nematoides/genética
6.
BMC Biol ; 22(1): 100, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679707

RESUMO

BACKGROUND: Plant pathogens secrete effector proteins into host cells to suppress immune responses and manipulate fundamental cellular processes. One of these processes is autophagy, an essential recycling mechanism in eukaryotic cells that coordinates the turnover of cellular components and contributes to the decision on cell death or survival. RESULTS: We report the characterization of AVH195, an effector from the broad-spectrum oomycete plant pathogen, Phytophthora parasitica. We show that P. parasitica expresses AVH195 during the biotrophic phase of plant infection, i.e., the initial phase in which host cells are maintained alive. In tobacco, the effector prevents the initiation of cell death, which is caused by two pathogen-derived effectors and the proapoptotic BAX protein. AVH195 associates with the plant vacuolar membrane system and interacts with Autophagy-related protein 8 (ATG8) isoforms/paralogs. When expressed in cells from the green alga, Chlamydomonas reinhardtii, the effector delays vacuolar fusion and cargo turnover upon stimulation of autophagy, but does not affect algal viability. In Arabidopsis thaliana, AVH195 delays the turnover of ATG8 from endomembranes and promotes plant susceptibility to P. parasitica and the obligate biotrophic oomycete pathogen Hyaloperonospora arabidopsidis. CONCLUSIONS: Taken together, our observations suggest that AVH195 targets ATG8 to attenuate autophagy and prevent associated host cell death, thereby favoring biotrophy during the early stages of the infection process.


Assuntos
Autofagia , Nicotiana , Phytophthora , Doenças das Plantas , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Nicotiana/microbiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Família da Proteína 8 Relacionada à Autofagia/genética , Interações Hospedeiro-Patógeno
7.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1170-1194, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658156

RESUMO

Sorghum aphid (Melanaphis sacchari) and head smut fungi (Sporisorium reilianum) infesting sorghum cause delayed growth and development, and reduce yield and quality. This study use bioinformatics and molecular biological approaches to profile the gene expression pattern during sorghum development and under pest infestation, and analyzed the natural allelic DNA variation of sorghum MYC gene family. The findings provide insights for potential application in breeding the stress resistant and high productivity sorghum varieties. The results indicated that there are 28 MYC genes identified in sorghum genome, distributed on 10 chromosomes. The bHLH_MYC_N and HLH domains are the conserved domains of the MYC gene in sorghum. Gene expression analysis showed that SbbHLH35.7g exhibited high expression levels in leaves, SbAbaIn showed strong expression in early grains, and SbMYC2.1g showed high expression levels in mature pollen. In anti-aphid strains at the 5-leaf stage, SbAbaIn, SbLHW.4g and SbLHW.2g were significantly induced in leaves, while SbbHLH35.7g displayed the highest expression level in panicle tissue, which was significantly induced by the infection of head smut. Promoter cis-element analysis identified methyl jasmonate (MJ), abscisic acid (ABA), salicylic acid (SA) and MYB-binding sites related to drought-stress inducibility. Furthermore, genomic resequencing data analysis revealed natural allelic DNA variations such as single nucleotide polymorphism (SNP) and insertion-deletion (INDEL) for the key SbMYCs. Protein interaction network analysis using STRING indicated that SbAbaIn interacts with TIFYdomain protein, and SbbHLH35.7g interacts with MDR and imporin. SbMYCs exhibited temporal and spatial expression patterns and played vital roles during the sorghum development. Infestation by sugarcane aphids and head smut fungi induced the expression of SbAbaIn and SbbHLH35.7g, respectively. SbAbaIn modulated the jasmonic acid (JA) pathway to regulate the expression of defensive genes, conferring resistance to insects. On the other hand, SbbHLH35.7g participated in detoxification reactions to defend against pathogens.


Assuntos
Acetatos , Alelos , Afídeos , Ciclopentanos , Sorghum , Sorghum/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Afídeos/genética , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Perfilação da Expressão Gênica , Animais , Regulação da Expressão Gênica de Plantas , Variação Genética , Genes myc/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
8.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38366574

RESUMO

Plant-parasitic nematodes are one of the most economically important pests of crops. It is widely accepted that horizontal gene transfer-the natural acquisition of foreign genes in parasitic nematodes-contributes to parasitism. However, an apparent paradox has emerged from horizontal gene transfer analyses: On the one hand, distantly related organisms with very dissimilar genetic structures (i.e. bacteria), and only transient interactions with nematodes as far as we know, dominate the list of putative donors, while on the other hand, considerably more closely related organisms (i.e. the host plant), with similar genetic structure (i.e. introns) and documented long-term associations with nematodes, are rare among the list of putative donors. Given that these nematodes ingest cytoplasm from a living plant cell for several weeks, there seems to be a conspicuous absence of plant-derived cases. Here, we used comparative genomic approaches to evaluate possible plant-derived horizontal gene transfer events in plant parasitic nematodes. Our evidence supports a cautionary message for plant-derived horizontal gene transfer cases in the sugar beet cyst nematode, Heterodera schachtii. We propose a 4-step model for horizontal gene transfer from plant to parasite in order to evaluate why the absence of plant-derived horizontal gene transfer cases is observed. We find that the plant genome is mobilized by the nematode during infection, but that uptake of the said "mobilome" is the first major barrier to horizontal gene transfer from host to nematode. These results provide new insight into our understanding of the prevalence/role of nucleic acid exchange in the arms race between plants and plant parasites.


Assuntos
Plantas , Tylenchoidea , Animais , Plantas/genética , DNA , Genômica , Tylenchoidea/genética , Doenças das Plantas/parasitologia
9.
Plant Physiol ; 195(1): 799-811, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330218

RESUMO

The transcription factor WUSCHEL-RELATED HOMEOBOX 11 (WOX11) in Arabidopsis (Arabidopsis thaliana) initiates the formation of adventitious lateral roots upon mechanical injury in primary roots. Root-invading nematodes also induce de novo root organogenesis leading to excessive root branching, but it is not known if this symptom of disease involves mediation by WOX11 and if it benefits the plant. Here, we show with targeted transcriptional repression and reporter gene analyses in Arabidopsis that the beet cyst nematode Heterodera schachtii activates WOX11-mediated adventitious lateral rooting from primary roots close to infection sites. The activation of WOX11 in nematode-infected roots occurs downstream of jasmonic acid-dependent damage signaling via ETHYLENE RESPONSE FACTOR109, linking adventitious lateral root formation to nematode damage to host tissues. By measuring different root system components, we found that WOX11-mediated formation of adventitious lateral roots compensates for nematode-induced inhibition of primary root growth. Our observations further demonstrate that WOX11-mediated rooting reduces the impact of nematode infections on aboveground plant development and growth. Altogether, we conclude that the transcriptional regulation by WOX11 modulates root system plasticity under biotic stress, which is one of the key mechanisms underlying the tolerance of Arabidopsis to cyst nematode infections.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Fatores de Transcrição , Tylenchoidea , Animais , Raízes de Plantas/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/parasitologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tylenchoidea/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Plantas Geneticamente Modificadas
10.
Mol Plant Microbe Interact ; 37(4): 416-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38171485

RESUMO

Soybean cyst nematode (Heterodera glycines, soybean cyst nematode [SCN]) disease adversely affects the yield of soybean and leads to billions of dollars in losses every year. To control the disease, it is necessary to study the resistance genes of the plant and their mechanisms. Isoflavonoids are secondary metabolites of the phenylalanine pathway, and they are synthesized in soybean. They are essential in plant response to biotic and abiotic stresses. In this study, we reported that phenylalanine ammonia-lyase (PAL) genes GmPALs involved in isoflavonoid biosynthesis, can positively regulate soybean resistance to SCN. Our previous study demonstrated that the expression of GmPAL genes in the resistant cultivar Huipizhi (HPZ) heidou are strongly induced by SCN. PAL is the rate-limiting enzyme that catalyzes the first step of phenylpropanoid metabolism, and it responds to biotic or abiotic stresses. Here, we demonstrate that the resistance of soybeans against SCN is suppressed by PAL inhibitor l-α-(aminooxy)-ß-phenylpropionic acid (L-AOPP) treatment. Overexpression of eight GmPAL genes caused diapause of nematodes in transgenic roots. In a petiole-feeding bioassay, we identified that two isoflavones, daidzein and genistein, could enhance resistance against SCN and suppress nematode development. This study thus reveals GmPAL-mediated resistance against SCN, information that has good application potential. The role of isoflavones in soybean resistance provides new information for the control of SCN. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glycine max , Isoflavonas , Fenilalanina Amônia-Liase , Doenças das Plantas , Tylenchoidea , Glycine max/genética , Glycine max/parasitologia , Tylenchoidea/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Animais , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Resistência à Doença/genética , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
11.
Phytopathology ; 114(3): 618-629, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37889191

RESUMO

The dynamic of plant-parasitic nematode populations in soil is closely related to soil microorganisms. Fungi from Heterodera zeae cysts were isolated to explore the phenomenon of decline in the H. zeae population in the soil. Phylogenetic study of partial ITS, BenA, CaM, and RPB2 gene sequences, in addition to morphological investigations, was utilized to identify a nematode-destroying fungus. The nematicidal activity of a novel strain GX1 against H. zeae was assessed in vitro and in the greenhouse. Our findings revealed that strain GX1 is a new species of Talaromyces, named Talaromyces cystophila. It has a strong parasitic and lethal effect on H. zeae cysts, with 91.11% parasitism on cysts at 3 days after treatment. The contents of second-stage juveniles (J2s) and eggs inside the cysts were degraded and formed dense vacuoles, and the damaged eggs could not hatch normally. The spore suspension exhibited high nematophagous activity against nematodes, and fermentation filtrate exhibited marked inhibition of egg hatching and nematicidal activities on J2s. The hatching inhibition rates of eggs exposed to 1 × 108 CFU/ml spore suspensions or 20% 1-week fermentation filtrate (1-WF) for 15 days were 98.56 and 100%, respectively. The mortality of J2s exposed to 1 × 108 CFU/ml spore suspension reached 100% at 24 h; exposure to 50% 2-WF was 98.65 and 100% at 24 and 48 h, respectively. Greenhouse experiments revealed that the spore suspension and fermentation broth considerably decreased H. zeae reproduction by 56.17 to 78.76%. T. cystophila is a potential biocontrol strain with nematophagous and nematicidal activity that deserves attention and application.


Assuntos
Cistos , Talaromyces , Tylenchida , Tylenchoidea , Animais , Zea mays , Talaromyces/metabolismo , Filogenia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/parasitologia , Antinematódeos/farmacologia , Solo
12.
Mol Plant Microbe Interact ; 37(3): 179-189, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37870371

RESUMO

Root-knot and cyst nematodes are two groups of plant parasitic nematodes that cause the majority of crop losses in agriculture. As a result, these nematodes are the focus of most nematode effector research. Root-knot and cyst nematode effectors are defined as secreted molecules, typically proteins, with crucial roles in nematode parasitism. There are likely hundreds of secreted effector molecules exuded through the nematode stylet into the plant. The current research has shown that nematode effectors can target a variety of host proteins and have impacts that include the suppression of plant immune responses and the manipulation of host hormone signaling. The discovery of effectors that localize to the nucleus indicates that the nematodes can directly modulate host gene expression for cellular reprogramming during feeding site formation. In addition, plant peptide mimicry by some nematode effectors highlights the sophisticated strategies the nematodes employ to manipulate host processes. Here we describe research on the interactions between nematode effectors and host proteins that will provide insights into the molecular mechanisms underpinning plant-nematode interactions. By identifying the host proteins and pathways that are targeted by root-knot and cyst nematode effectors, scientists can gain a better understanding of how nematodes establish feeding sites and subvert plant immune responses. Such information will be invaluable for future engineering of nematode-resistant crops, ultimately fostering advancements in agricultural practices and crop protection. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.


Assuntos
Cistos , Tylenchida , Tylenchoidea , Animais , Feminino , Tylenchoidea/genética , Interações Hospedeiro-Parasita/fisiologia , Transdução de Sinais , Produtos Agrícolas , Doenças das Plantas/parasitologia
13.
Mol Plant Microbe Interact ; 37(4): 380-395, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114195

RESUMO

Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Hemípteros , Nicotiana , Animais , Nicotiana/genética , Nicotiana/microbiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Pseudomonas syringae/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Fertilidade/genética
14.
Nat Commun ; 14(1): 7629, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993454

RESUMO

Plant-parasitic nematodes are one of the most economically impactful pests in agriculture resulting in billions of dollars in realized annual losses worldwide. Soybean cyst nematode (SCN) is the number one biotic constraint on soybean production making it a priority for the discovery, validation and functional characterization of native plant resistance genes and genetic modes of action that can be deployed to improve soybean yield across the globe. Here, we present the discovery and functional characterization of a soybean resistance gene, GmSNAP02. We use unique bi-parental populations to fine-map the precise genomic location, and a combination of whole genome resequencing and gene fragment PCR amplifications to identify and confirm causal haplotypes. Lastly, we validate our candidate gene using CRISPR-Cas9 genome editing and observe a gain of resistance in edited plants. This demonstrates that the GmSNAP02 gene confers a unique mode of resistance to SCN through loss-of-function mutations that implicate GmSNAP02 as a nematode virulence target. We highlight the immediate impact of utilizing GmSNAP02 as a genome-editing-amenable target to diversify nematode resistance in commercially available cultivars.


Assuntos
Glycine max , Nematoides , Animais , Glycine max/genética , Glycine max/parasitologia , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Nematoides/genética , Genes de Plantas , Análise de Sequência de DNA , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Resistência à Doença/genética
15.
Nature ; 622(7981): 139-148, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704724

RESUMO

Aphids transmit viruses and are destructive crop pests1. Plants that have been attacked by aphids release volatile compounds to elicit airborne defence (AD) in neighbouring plants2-5. However, the mechanism underlying AD is unclear. Here we reveal that methyl-salicylate (MeSA), salicylic acid-binding protein-2 (SABP2), the transcription factor NAC2 and salicylic acid-carboxylmethyltransferase-1 (SAMT1) form a signalling circuit to mediate AD against aphids and viruses. Airborne MeSA is perceived and converted into salicylic acid by SABP2 in neighbouring plants. Salicylic acid then causes a signal transduction cascade to activate the NAC2-SAMT1 module for MeSA biosynthesis to induce plant anti-aphid immunity and reduce virus transmission. To counteract this, some aphid-transmitted viruses encode helicase-containing proteins to suppress AD by interacting with NAC2 to subcellularly relocalize and destabilize NAC2. As a consequence, plants become less repellent to aphids, and more suitable for aphid survival, infestation and viral transmission. Our findings uncover the mechanistic basis of AD and an aphid-virus co-evolutionary mutualism, demonstrating AD as a potential bioinspired strategy to control aphids and viruses.


Assuntos
Ar , Afídeos , Doenças das Plantas , Plantas , Ácido Salicílico , Transdução de Sinais , Afídeos/fisiologia , Afídeos/virologia , Interações entre Hospedeiro e Microrganismos , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas/parasitologia , Plantas/virologia , Ácido Salicílico/metabolismo , Simbiose , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Nicotiana/virologia , Proteínas Virais/metabolismo , Animais
16.
Mol Plant Pathol ; 24(9): 1033-1046, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37448165

RESUMO

Lipase is involved in lipid hydrolysis, which is related to nematodes' energy reserves and stress resistance. However, the role of lipases in Bursaphelenchus xylophilus, a notorious plant-parasitic nematode responsible for severe damage to pine forest ecosystems, remains largely obscure. Here, we characterized a class III lipase as a candidate effector and named it BxLip-3. It was transcriptionally up-regulated in the parasitic stages of B. xylophilus and specifically expressed in the oesophageal gland cells and the intestine. In addition, BxLip-3 suppressed cell death triggered by the pathogen-associated molecular patterns PsXEG1 and BxCDP1 in Nicotiana benthamiana, and its Lipase-3 domain is essential for immunosuppression. Silencing of the BxLip-3 gene resulted in a delay in disease onset and increased the activity of antioxidant enzymes and the expression of pathogenesis-related (PR) genes. Plant chitinases are thought to be PR proteins involved in the defence system against pathogen attack. Using yeast two-hybrid and co-immunoprecipitation assays, we identified two class I chitinases in Pinus thunbergii, PtChia1-3 and PtChia1-4, as targets of BxLip-3. The expression of these two chitinases was up-regulated during B. xylophilus inoculation and inhibited by BxLip-3. Overall, this study illustrated that BxLip-3 is a crucial virulence factor that plays a critical role in the interaction between B. xylophilus and host pine.


Assuntos
Quitinases , Pinus , Tylenchida , Animais , Xylophilus , Ecossistema , Quitinases/genética , Pinus/parasitologia , Tylenchida/genética , Doenças das Plantas/parasitologia
17.
Planta ; 258(2): 40, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37420105

RESUMO

MAIN CONCLUSION: Expression levels of AtPP2-A3 and AtPP2-A8 are reduced in syncytia induced by Heterodera schachtii and decline of their expression levels decreases host susceptibility, whereas their overexpression promotes susceptibility to parasite. Plant-parasitic nematodes cause huge crop losses worldwide. Heterodera schachtii is a sedentary cyst-forming nematode that induces a feeding site called a syncytium via the delivery of secreted chemical substances (effectors) to host cells, which modulate host genes expression and phytohormone regulation patterns. Genes encoding the Nictaba-related lectin domain have been found among the plant genes with downregulated expression during the development of syncytia induced by H. schachtii in Arabidopsis thaliana roots. To investigate the role of two selected Nictaba-related genes in the plant response to beet cyst nematode parasitism, mutants and plants overexpressing AtPP2-A3 or AtPP2-A8 were infected, and promoter activity and protein localization were analyzed. In wild-type plants, AtPP2-A3 and AtPP2-A8 were expressed only in roots, especially in the cortex and rhizodermis. After nematode infection, their expression was switched off in regions surrounding a developing syncytium. Astonishingly, plants overexpressing AtPP2-A3 or AtPP2-A8 were more susceptible to nematode infection than wild-type plants, whereas mutants were less susceptible. Based on these results and changes in AtPP2-A3 and AtPP2-A8 expression patterns after treatments with different stress phytohormones, we postulate that the AtPP2-A3 and AtPP2-A8 genes play important roles in the defense response to beet cyst nematode infection.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Doenças das Plantas , Tylenchoidea , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Tylenchoidea/patogenicidade
18.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047819

RESUMO

Genes of host plants and parasitic nematodes govern the plant-nematode interaction. The biological receptors and parasitism effectors are variable among plant species and nematode populations, respectively. In the present study, hatch testing and bioassays on cabbage, oilseed radish, and mustard were conducted to compare the biological characteristics among six populations of the beet cyst nematode Heterodera schachtii. Genetic patterns of the vap1 gene for the studied populations were distinct as shown by denaturing the gradient gel electrophoresis of PCR-amplified gene fragments. Concurrently, significant differences in the hatching rates, number of penetrated J2 in roots, and eggs/cyst ratios among the six nematode populations for the three cruciferous species were observed. In conclusion, analyzing the population genetic structure of H. schachtii plays a pivotal role in illustrating the variability in the plant-nematode interaction among its populations and plant species, which in its role leads to developing nematode management depending on plant resistance.


Assuntos
Tylenchoidea , Animais , Tylenchoidea/genética , Mostardeira , Variação Genética , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
19.
New Phytol ; 237(3): 807-822, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36285401

RESUMO

Plant root architecture plasticity in response to biotic stresses has not been thoroughly investigated. Infection by endoparasitic cyst nematodes induces root architectural changes that involve the formation of secondary roots at infection sites. However, the molecular mechanisms regulating secondary root formation in response to cyst nematode infection remain largely unknown. We first assessed whether secondary roots form in a nematode density-dependent manner by challenging wild-type Arabidopsis plants with increasing numbers of cyst nematodes (Heterodera schachtii). Next, using jasmonate-related reporter lines and knockout mutants, we tested whether tissue damage by nematodes triggers jasmonate-dependent secondary root formation. Finally, we verified whether damage-induced secondary root formation depends on local auxin biosynthesis at nematode infection sites. Intracellular host invasion by H. schachtii triggers a transient local increase in jasmonates, which activates the expression of ERF109 in a COI1-dependent manner. Knockout mutations in COI1 and ERF109 disrupt the nematode density-dependent increase in secondary roots observed in wild-type plants. Furthermore, ERF109 regulates secondary root formation upon H. schachtii infection via local auxin biosynthesis. Host invasion by H. schachtii triggers secondary root formation via the damage-induced jasmonate-dependent ERF109 pathway. This points at a novel mechanism underlying plant root plasticity in response to biotic stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Infecções por Nematoides , Tylenchoidea , Animais , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tylenchoidea/fisiologia , Ácidos Indolacéticos/metabolismo , Infecções por Nematoides/metabolismo , Doenças das Plantas/parasitologia
20.
J Agric Food Chem ; 70(51): 16135-16145, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36528808

RESUMO

The mycoparasite Pythium oligandrum is a nonpathogenic oomycete that can boost plant immune responses. Elicitins are microbe-associated molecular patterns (MAMPs) specifically produced by oomycetes that activate plant defense. Here, we identified a novel elicitin, PoEli8, from P. oligandrum that exhibits immunity-inducing activity in plants. In vitro-purified PoEli8 induced strong innate immune responses and enhanced resistance to the oomycete pathogen Phytophthora capsici in Solanaceae plants, including Nicotiana benthamiana, tomato, and pepper. Cell death and reactive oxygen species (ROS) accumulation triggered by the PoEli8 protein were dependent on the plant coreceptors receptor-like kinases (RLKs) BAK1 and SOBIR1. Furthermore, REli from N. benthamiana, a cell surface receptor-like protein (RLP) was implicated in the perception of PoEli8 in N. benthamiana. These results indicate the potential value of PoEli8 as a bioactive formula to protect Solanaceae plants against Phytophthora.


Assuntos
Phytophthora , Pythium , Solanaceae , Phytophthora/fisiologia , Pythium/fisiologia , Resistência à Doença , Plantas , Nicotiana , Doenças das Plantas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA